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Abstract

This note describes software implementing the SMART algorithm. SMART gener-
alizes the projection pursuit method to classification and multiple response regression.
SMART also provides a more efficient algorithm for single response projection pursuit

regression.
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SMART

User’s Guide
1. Introduction

SMART (Smooth Multiple Additive Regression Technique) is 2 method for modeling
a set of response variables ¥; (1 < ¢ < ¢) as functions of a set of predictor variables

X; (1 < j < p) based on matched observations (training data)

Yiks Y2k " s Yaks T1ks Taks - Tpk (1 < k< N) (0)

the models take the form
E[K | 1, 22, - ’)zp] =Y+ Z ﬂimfm(z OtjmZ;) (1)
m=1 =1

with ¥; = EY;, Efm =0, Efi =1and Y%, a%, = 1. The coefficients fim,ajm,

and the functions f,, are parameters of the model and are estimated by least squares. The

criterion . M
Ly=Y WEY;=Y; - ) Bimfm(anz) (2)
=1 m=1

is minimized with respect to the parameters ﬂ;m,ag = (@ym - - apm) and the functions
fm. The response weights W; (1 < ¢ < g), specified by the user, permit some flexibility in
specification of the loss metric (see below). The expected values are computed from the

data as

N N
E(Z) =) wizk/ D wk (3)
k=1 k=1

where Z is considered to be a random variable and zx (1 < k < N) are its realized
values in the data. The observation weights wx(1 < k < N), specified by the user, can
be employed to assign differing mass to different observations. They can also be used
to implement iterative reweighting schemes for robustification or approximate maximum
likelihood fitting.

It should be noted that the loss criterion Ly (2) is sensitive to the relative scales of

the response variables Y; as is true for any distance measure. The influence of each ¥; will
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be in proportion to its variance Var(Y;). If it is desired that each response variable have
the same effect on the loss criterion one can set W; = 1/Var (Y;) or rescale the responses
to have the same variance. _

From (1) it is seen that SMART modeling is a generalization of projection pursuit
regression PPR (Friedman and Stuetzle, 1981). Each response variable is modeled as
a (usually) different linear combination of the predictor functions f,,. Each predictor
function is taken as a (smooth, but otherwise unrestricted) function of a (usually) different
linear combination of the predictor variables. Estimates for the parameters of the linear
combinations, and the functions, are chosen to be the values that minimize the loss criterion
L, (2). For the case of a single response variable (g = 1) SMART models have the same
form as PPR models but they differ from PPR models in that SMART chooses estimates
that minimize (2) whereas PPR choooses the af, (1 < m < M) in a forward stagewise

manner. This can result in considerably different models, especially when there are high

associations among the predictor variables.

2. Classification

Classification is closely related to regression. Here a single response variable Y assumes
several categorical (unorderable) values (¢3, ¢z, -, ¢q). The loss criterion is usually taken

to be the misclassification risk
q

R=E[min ) k;p(i| 21,22, 7)] (4)
T =

where I;; is the (user specified) loss for predicting Y = c; when its true value is ¢; (I;; = 0).
The conditional probability p(i | z; - - - z,) is the probability that ¥ = ¢; given a particular
set of values for the predictor variables z; - - z,. The sum in (4) is simply the loss for
predicting Y = c¢; given z; ---z,. The minimization operation pfovides a decision rule
- that minimizes this loss at each set of predictor values. The risk is then the expected or
average loss using this optimal decision rule. The art of classification is to find estimates

___of the conditional probabilities that minimize the misclassification risk.

Defining category (class) indicator variables for each observation k as

B = lifye=¢; 1<k<N
* =~ 1 0otherwise 1<i<gq
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one has

. ms S
p(:lzl~--zp)=Ti—E[H;|z1---zp] (5)

v : N

with m; the unconditional (prior) probability that Y =¢; (H; = 1), s; = Zwké(yk,c;),
k=1

and

q
S = E 8;. Here § is the Kronecker delta function

i=1

_flifa=0b
§(a,b) = { 0 otherwise

Substituting (5) into (4) one has

q
= i milij NP
R= E[lggqs 2. E[H; |z 5] (6)

s=1 .

From this one sees that the optimal decision rule for a given set of predictor values z; - -- zp
is to assign Y = cs. where J* is the integer value (1 < J* < q) that minimizes the sum in
(6).

When the prior probabilities 7; (1 < 4 < g) are unknown, they can be estimated from
the data as #; = s;/S. Often the losses l;; are taken to be simply l;; =1 — 6(3, 7). When
both of these situations occur the misclassification risk reduces to simply the misclassifi-
cation probability.

SMART models the condition expectations (5, 6) in form given by (1). Ideally the
parameter and function estimates should be chosen to minimize the misclassification risk
(6). However, as discussed in Breiman, Friedman, Olshen and Stone (1983) (see also Efron,
1978), this can lead to difficulties due to the non-convexity of (6). A good surrogate is the

squared error loss criterion L (2) with

S1; o
W; = =2 3 k. (7)

Y Modeling Strategy.

It is the purpose of the SMART algorithm to minimize Ly (2) with respect to the
parameters Bim, @jm, and functions f, (1 <1 <q, 1 <5 <p, 1 £ m < M), given the
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training data (0) and a loss metric W; (1 < ¢ < g). The specifics of the algorithm are given
in Appendix 1. The principal task of the user is to choose M (2) the number of predictive
terms comprising the model. Increasing the number of terms decreases the bias (model
specification error) at the expense of increasing the variance of the (model and parameter)
estimates. Since the expected squared error, ESE, is the sum of these two effects - ESE
= (bias)? + variance, there is an optimal value for M. Sample reuse techniques can be
used to estimate these effects - ESE through cross-validation (Stone, 1977) and (Geisser,
1975), and variance through bootstrapping (Efron, 1983). It is possible to implement these
procedures in conjunction with SMART with the aim of estimating an optimal value for
M as well as confidence intervals for estimates.

Since the variance tends to increase linearly with increasing M while the (bias)? tends
to drop rapidly for small (increasing) M, leveling off to a slow decrease for larger M, a
good estimate for the optimal M value can usually be made by simply inspecting L, vs.
M for various values of M. That point at which a unit decrease in M leads to a relatively
large increase in Ly (compared to that for close-by larger M values) is often a good choice.
Since the ESE tends to vary slowly as a function of M in the region near the optimal M
value (especially on the side of increasing M), the choice is not critical provided it is not
too small.

For a given value of M, solutions (minimizing L;) may not be unique. Sometimes
there are local minima that can trap the SMART algorithm thereby masking a better
global minimum. Such local minima represent solutions that are relevant to larger (higher
M) models. Solutions are not necessarily found in optimal order as M is increased. This
suggests a backwards stepwise model selection procedure.

The strategy is to start with a relatively large value of M (say M = M}) and find
all models of size My, and less. That is, solutions that minimize L, are found for M =
Mp, My —1, M, —2,---, 1 in order of decreasing M. The starting parameter values
for the numerical search in each M-term model are the solution values for the M most

—important (out of M + 1) terms of the previous model. Term importance is measured as
q

Im=) Wi|Bim| (1<m<M) (8)
i=1
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normalized so that the most important term has unit importance.
(Note that the variance of all f,,, is one.) The starting point for the minimization of the
largest model, M = M, is given by an M|, term stagewise model (Friedman and Stuetzle,
1981).

‘The sequence of solutions generated in this manner is then examined by the user and

a final model is chosen according to the guidelines above.

4. Relative Importance of Predictor Variables

It is often useful to have an idea of the relative importance of each predictor variable to
the final model. For (single response) linear models an often used measure is the absolute
value of the corresponding regression coefficient a; times a scale measure of the predictor
variable o, I; =05 | aj |, (1 £ 7 < p). A corresponding relative importance measure for

(multiple response) nonlinear models would be

- aY;
L=0;) WiE|35 | (1<5<p)
=1 J
with ¥; = E[Y; | z; - - - z,]. For SMART models (1) this becomes
q M
Li=0;) WiE| ) Pimesmf'(oafz) | (1S5 <p) (9)
=1 m=1

where f,,(2) = dfm/dz. In the case of only one term, M = 1, (9) is equivalent to I; = o, |
a; |. It is important to keep in mind that the same care is required in interpreting (9) as
in the corresponding interpretation of regression coefficients in linear models, especially in

the presence of high collinearity among the predictor variables.

5. SMART Software - Input

- SMART software is implemented as a collection of FORTRAN subroutines. The user
interface is provided by the parameter list (calling sequence) to some of these routines.

In order to apply SMART modeling it is necessary to write a driver program that reads

the training data (0) into internal storage arrays, sets various parameters of the problem,
and then pass these to SMART through the parameter list of the appropriate SMART

subroutine.



5.1 SMART Regression

CALL SMARTR (ML, MU,P,Q,N, W, X, Y, WW,
~ SMOD, NSMOD, SP, NSP, DP, NDP)
The first nine parameters are input defining the problem and the last six define storage
workspace necessary for the operation of the program.

The first two parameters ML, MU (type integer) define the sequence of models in
the backwards stepwise model selection procedure described above (Section 4). The value
of the first parameter, ML, defines the number of terms (M in (1)) in the largest model
of the sequence while the second similarily defines the smallest model in the sequence.
This smallest MU-term model is the one stored (in SMOD, see below) for later predictive
use. (Also the predictive functions f,,(af,z) are only returned for the MU-term model
and relative predictor variable importances (9) are calculated only for this model.) A good
strategy is to initially set ML reasonably large (subject to computing time limitations) and
set MU = 1, thereby generating all models of size M = ML and less (1). The particular
model selected by the user can then be computed and stored for later predictive use. Also,
the predictive functions and relative predictor variable importances (9) can be inspected
for this model. This is accomplished by rerunning the program with the same value for
ML but with MU set to the size of the user selected model.

The next three parameters (type integer) define the size of the problem:

P = number of predictor variables

Q@ = number of response variables

N = number of observations.
these correspond to the quantities p,q, N of (2).

The next four parameters (type real) contain the data and corresponding weights.
These are arrays that must be declared and appropriatel; dimensioned in the user written
driver program:
~ Real W(N): observation weights
W(K) contains the weight for the Kth

observation{wy, in (3))
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Real X(P, N): predictor data matrix
X(J, K) contains the value of the Jth
predictor variable of Kth observation.

Real Y(Q, N): response data matrix

' Y (I, K) contains the value of the Ith
response variable of Kth observation.

Real WW(Q): response weights

WW (I) contains the response weight for
Ith response (W; in (2)).

The final six parameters define storage workspace necessary for the operation of the
algorithm. The parameters SMOD, SP, and DP are arrays that must be declared and
dimensioned in the calling program. The quantities NSMOD, NSP, and NDP (type integer)
give the dimensions assigned (by the user) to the corresponding three storage arrays so
that SMART can check if the workspace sizes (dimensioned values) are large enough.

REAL SMOD (NSMOD): stores parameters of the final (M = MU) term

model. Minimum dimension is

NSMOD > ML(P+Q+2N)+Q +17.
REAL SP(NSP): single precision scratch storage

workspace. Minimum dimension

is NSP > N(Q +15) + Q + 3P.
DOUBLE PRECISION DP(NDP): double precision scratch

storage workspace. Minimum dimension

is NDP > P(P+1)/2+ 6P,

5.2 SMART Classification

CALL SMARTC (ML, MU, P, Q, N, W, X, C, PI, FLS,
SMOD, NSMOD, SP, XSP, DP, NDP)

The first ten parameters are input defining the problem and the last six define storage
workspace. The parameters ML, MU, P,N,W, X, DP,NDP are identical to the corre-

sponding ones for regression and are described in Section 5.1.
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The parameter @ (type integer) gives the number of classes - the number of distinct
values for the categorical response variable, C. The array C (type real) gives the class
identity of each observation:

REAL C(N):
C(K) contains the value of class
label for Kth observation
(1.0 < C(K) < FLOAT(Q)), K=1,N.

The next two parameters (type real) define the prior (uncondition) probabilities and
the loss structure for the classification problem.
Real PI(Q): class priors

PI(I) contains the prior probability for Ith
class (;) in (5) and (7)
(PI(I)>0, I =1,Q, and ZQ:PI(I) =1).

Real FLS(Q, Q): loss matrix =
FLS(I,J) contains the loss for
misclassifying a class I observation
as class J (l;; in (4) and (6)).
(FLS(1,J) 20, I #J, and
FLS(I,I)=0,1=1,Q,J=1Q.)

Often the prior probabilities m; (1 < # < ¢) are unknown and are to be estimated
from the data as #; = s;/S where s; is the sum of (observation) weights for the class
3 observations and S is the sum of weights for all observations. When this is the case,
there are no user defined prior probabilities and the PI array need not be declared or
dimensioned in the calling program. This situation is indicated by passing a single scalar
value BIG in place of the PI array in the corresponding position in the parameter list.

The value of BIG is a large number defined internally to SMART - see section 5.3

~ " Similarly, only a simple loss structure is often desired, namely l;; =1 — §(3,7). That
is, a simple unit loss for each misclassified observation. When this is the case the FLS

array need not be declared or dimensioned in the calling program, and the single value
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BIG entered its place in the parameter sequence.

The storage workspace arrays SMOD and SP, and their corresponding array dimen-
sions NSMOD and NSP, have the same meaning as for the regression problem (Section
5.1), however, the size of the dimensions must be a little larger for classification:

REAL SMOD(NSMOD), SP(NSP)

NSMOD > ML(P+Q +2N) +2Q +7
NSP > N(Q +15) +2Q + 3P.
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5.3 Incidental Parameters

COMMON/PARMS/IFL, LF, SPAN, ALPHA, BIG
This labeled common contains internal parameters of the algorithm that the user may
wish to change. Default values for these parameters are set at compile time in a BLOCK
DATA subprogram. This labeled common need only be declared in the user’s calling
program if he wishes to change any of their values from the default settings. This can be
done tising executable assignment statements in the user routine in which this common is
declared.
INTEGER IFL: FORTRAN file number for writing
printed output (Default, IFL=6)
If IFL < 0 no printed output
will be generated.
INTEGER LF: Optimizing level for minimization
algorithm, 0 < LF' < 3 (default,
LF=2). This controls tradeoff between
speed and thoroughness of optimization
algorithm (See Appendix 1).
REAL SPAN, ALPHA: Super smoother parameters. These
control operation of smoother used
to obtain function estimates (See
Friedman, 1984)
(Default values, SPAN=0.0, ALPHA
=0.0.)
REAL BIG: A large representative floating
point number very much larger than the
largest possible (absolute) data
value (Default, BIG = 102°)
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6. SMART Software - Output

The primary output of SMART is a model for estimating E[Y; | z; - -- zp] and, for
classification, a decision rule (6). A second level of output would be the parameters of
the SMART model (1). These are useful for interpretation of the dependence of each ¥;
on (z; --- zp). A third level of output would be additional diagnostic information (8}, (9)

useful for interpretation.
6.1 Primary Output

For a given set of values comprising a predictor vector (z; - - - ), the SMART estimate
(1) for Yi(zy - - - zp) = E[Y; | 21 - - - 3] is obtained by executing
CALL YHAT (XT, SMOD, YH).
This statement must be executed after calling either SMARTR (Section 5.1) or SMARTC
(Section 5.2). The array SMOD must be the same as in the call to SMARTR or SMARTC.
The quantities XT and Y H have the following meaning:
Real XT(P): input predictor vector
XT(J) contains the vilue of Jth variable, z;.
Real YH(Q): output expected response values (given XT')
YH(I) contains the estimated expected value for Ith response,
Bilzs - 2p).
For classification the minimum (estimated) risk decision rule (6) is obtained by exe-
cuting
CALL CLSFY (PI, FLS, YH, SMCD, ICL, RSK).
This statement must be executed after calling both SMARTC and YHAT. The quantities
PI, FLS SMOD are described in Section 5.2 and must be the same as in the call to
SMARTC. The array Y H is the output response vector from YHAT (see above, this
section) giving the relative class probabilities given XT = (X3, X3 --- Xp). The two output
_____quantities (from CLSFY) are ICL and RSK. The first, ICL, contains as its value the
class assignment that minimizes the (estimated) misclassification risk, while RSK has the
estimated value of this minimum risk. This second quantity is useful in accessing the

relative confidence in the class assignment.
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SMART modeling (as implemented here) does not constrain the values of the response
conditional expectation estimates. When these expectations are interpreted as conditional
probabilities (as in the case of classification), it is useful to constrain their individual values
so that the corresponding conditional probabilities (5) are between zero and one and sum
to one. When these constraints are violated by the ¥; as output from YHAT, CLSFY
modifies their values to satisfy these constraints in a way that preserves the relative values
of the corresponding probabilities p; (5). The conditional probability values are stored

in YH (replacing the conditional expectation estimates) before returning to the calling

program.

6.2 Secondary Output

The parameters of the SMART model are packed in the SMOD array upon return
from SMARTR or SMARTC. Several user callable subroutines are available to obtain
them in&é convenient form under program control. In addition some of these parameters,
M, ajm, Bim (1 =1,q, j = 1,p, m =1, M) (1), appear on the standard (printer) output
file IFL (provided IFL > 0, see section 5.3). The functions f,, (m = 1,M) (1) do not
appear on the standard output file. They must be obtained under program control, as
described below, and then transferred to a local (installation dependent) graphics library
for repréentation on a graphical output device. These functions are available only for the
final MU-term model (see Section 5.1).

The value of the goodness-of-fit criterion, F L2, Ly (2) for the final MU-term model
can be obtained by executing the statement

FL2 = GOF{SMOD, MU).
The array SMOD must be the same as in the call to SMARTR (Section 5.1) or SMARTC
(Section 5.2). The output quantity, MU, is the number of terms of the final (user specified)
model.

The parameter vectors a;m (1 < 7 < p) and Biym (1 £ ¢ < g) can be obtained for each

term, m, by executing the statement
FP = GTPRMS(ITERM, SMOD, A, B).
The array SMOD must be the same as in the call to SMARTR or SMARTC. The input
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quantity ITERM is the term number for which the parameters are desired. The parameters

are stored in the real arrays A and B:

REAL A(P): parameters of predictor linear combinations
A(d)=ajm (J,7=1,p)
REAL B(Q): parameters of the response linear combinations

B(I) =fim (I,i=1,q)

and ITERM = m.
The quantity FP has the value 1.0 if 1 < ITERM < MU and 0.0 otherwise. If FP = 0.0,
then no values are stored in the output arrays.

Each function f,,(al z) is represented by a set of matched pairs (fmk,tmk),1 < k <
N, one pair for each observation. Here fiuk = fmn(tmk) With £,k = T zi. These pairs can
be plotted as points on an available graphics device with f,,, as the ordinate and ¢,, the
abscissa. The points representing the function for each term, m, are obtained by executing
the statement

FP = GTFUN(ITERM, SMOD, F, T).

The quantities FP, ITERM, SMOD have the same meaning as with GTPRMS described
in the preceding paragraph. The function is stored in the two output arrays:

REAL F(N): ordinates, F(K) is the ordinate value for the Kth observation

Real T(N): abscissas, T(K) is the abscissa value for the Kth observation

where K=1, N. (Note that the observations are labeled here in increasing

order of T(K) rather than in their order in the data matrix.)

6.3 Third Level Output

In addition to the output obtainable under program control, SMART also writes
information to the standard output file IFL (provided IFL>0, see Section 5.3). This
information can help with model selection and in interpretation of the selected final model.
~~—For this output the goodness-of-fit is always expressed in terms of fraction of unexplained
variance defined as

e = Ly/ Zq:W,-E[Y.- -Y;? (10)

=1
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with Y; = EY; and L, given by (2). Note, however, that FUNCTION GOF (Section 6.2)
returns the value of Ls, not €2, for the final model.

This third level output consists of a listing of all of the (M-term) solutions MU < M <
ML, in order of decreasing value of M. Each solution is represented by the {a;m,Bim},
(1<1<gq, 1< j<p),for each term m (1 < m < M). The a;y, are given in order
of increasing j (A =) and the By, in order of increasing i(B =). The value of €2 for a
solution precedes the parameter listings of its terms.

Following the term parameter listings of a particular solution is a listing of the relative
importance of each term I, (8) (1 £ m < M). The starting parameter values in the
numerical search for the next smaller (M -1 t>erm) model are the solution values for the
M — 1 most important terms of this (M-term) model.

Following the relative term importance listing is a listing of the fraction of unexplained

variance e? for each response ¥; (1 < 1 < q) separately. Here
ok B
& = ElY; —Yi— ) Bimfm(abz)*/ElY; - V%
m=1

this output does not appear if there is only one response variable (g = 1).

For classification there are two additional quantities listed with each (M-term) solu-
tion. These are two different estimates of the misclassification risk associated with using
this model for the conditional expectations in a minimum risk decision rule (6). The
first estimate R; (MISCLASSIFICATION RISK) is obtained by classifying each training
observation k (1 < k < N) using the minimum loss rule (6)

q
S | Tibis g gy
Ji = min {g S BH: | 21k 3]} (1)

and then computing the risk by averaging the loss associated with the resulting misclassi-

fications

N q .
Ri=) w), % i (12)
i=1 '

k=1

The second estimate R; (CALCULATED FROM PROBABILITY ESTIMATES) is the
value of R (6) computed by substituting the conditional expectation estimates of this

(M-term) model directly into (6).
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To the extent that the conditional expectation (probability) estimates are accurate
these two risk estimates should have similar values. Note that R, is nearly always less than
R,. However, it is often possible to do accurate classification in the presence of very poor
probability estimates. This is especially true for the simple loss structure l;; = 1 — 6(1, 5)
where it is only necessary to correctly estimate which class has the highest probability given
1 - - Tp. The probability values themselves or even their order (except for the largest) are
not needed in this case.

Comparing the values of R, and R; gives some indication of how weli the model
conditional expectation estimates are approximating the true underlying probabilities. If
R, is much smaller than R; (which is often the case) then the probability estimates are
not too close. In this case some care should be exercised in interpreting the values of
YH(I) (1 £7I<Q)and RSK as returned by CLSFY (see Section 6.1).

The quantities described (so far) in this section are listed for each M- term solution
(MU < M < ML). The final MU-term solution is the SMART model relevant to the
output described in Sections 6.1 and 6.2. The relative importance of each predictor variable
I; (1 <7 < p) (9) (standardized so that the most important variable has unit importance)
is also computed for this last MU-term SMART model and listed at the end of the standard
dutput.
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Appendix 1

Numerical optimization of least squares criterion for SMART models

This section discusses the minimization of L (2) simultaneously with respect to a;m,
(1 €7 <p),Pim (1 £1 < g) and the functions f,(1 < m < M) for a given number of
terms M. An alternating optimization strategy is used. The parameters are grouped such
that the solution for those in each group is straightforward given fixed values for those
outside the group. A solution is obtained for the variables in the group and these solution
values replace their current parameter values. Attention is then focused on the next group
and this process repeated for its parameters. After solutions have been obtained for all
groups of parameters, another pass is made over the groups obtaining new solution values

given the new values for the parameters outside each group obtained in the previous pass.

‘These passes are repeated until the loss criterion Ly (2) fails to decrease on two consecutive

passes. Usually a threshold ¢ is set at a small value and if improvement on two consecutive
passes is less than ¢, iterations are stopped and the parameter values at that point taken
as the solution. Since at each step in this process Ls is made smaller through a partial
minimization, and Ls > 0, the alternating optimization must converge (provided e is large
compared to the numerical accuracy of the computer’s arithmetic). However, there is no
guarantee that the solution is the global minimum of Ly. It may be a local minimum.
Strategy for dealing with this problem in the context of SMART modeling is discussed in

Section 3.

The parameter grouping used in the SMART algorithm is hierarchical. The first level
grouping is by term. The parameters a;m(l1 < 7 £ p), Bim(1 £ 1 < q) and the function
fm (for fixed m) form each group. There are obviously M such groups. At the second
level the parameters of each term are divided into three groups: the o, (1 < 7 < p) form

the first (sub) grouping, the fim (1 < 1 < g) form the second and the function f,, forms

the third.

Consider a particular term, k (1 < k < M). The loss criterion (2) can be reexpressed
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as

q
Ly=LP = EW:‘ E[Ryx) — Bir fr(af z)]° (A1)
=1
with
Ry =Y =Y = Y Pimfm(ckz) (A2)
m#£k

Equation Al isolates the kth term’s contribution to the criterion. Following the alter-
nating optimization strategy we minimize Lo (Lg‘)) with respect to the parameters of the
kth term. These parameter values are then used to help define Ry, k' # k, to obtain
new solutions for the parameters of other terms. Repeated passes are made over all the
terms until convergence (L2 stops decreasing-see above).

We now focus on obtaining solutions for the parameters of the kth term given Ry,

(A2). The solutions for the Bk (given fi and af) are straightforward

g, = ElBup fu(ei2)]
T ElfueEo)?

(Remember that E[R;x)] = E|fi(cf z)] = 0.)

The solution for the function fx (given B and a,'f) is 2lmost as easily obtained.

(1<i<gq) (43)

Reexpressing L;(;k) (A1) as
. q
Lg ) = Eafa: E[z “V;(R;‘(k) - ﬁikfk)z | alzc'z]’ (A4)
=1

we see that it is minimized if fi is chosen to minimize the conditional expectation in A4

for each value of af z. This is accomplished by
q q
filafz) = E[)_ WiBuRux) | ofz]/ Y Wibk (45)
i=1 §=1

Since we require Efy = 0 and EfZ = 1, we standardize f, making the denominator in
_(AS5) irrelevant.

It remains to find a solution that minimizes Lgk) (A1) with respect to of = (ayx,
gk - - - @tpk) given values for B (1 < ¢ < ¢) and a (fixed) function fx. Unlike the other

parameters (B;x and fx), af does not enter in a purely quadratically way into the loss
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criterion. Therefore, solutions may not be unique, and they cannot be obtained in a single
step. An iterative numerical optimization must be performed.

The loss criterion Ly (2, A1) can be expressed in the generic form
q
La(ax) = Y WiE[gi(ow)]? (46)

with
gi(ar) = (Rix) — Pirfr(ai z)) (A7)

The classical numerical optimization technique for criteria of the form (A6) is the Gauss-

Newton method (see Gill, Murray and Wright, 1981, Section 4.7). Let a(O)T =

(ag(,)e)v, ,apk ) be a trial set of values at some point during the optimization. The Gauss-

Newton estimate for the solution af (the next set of trial values in the iterative process) is

ol ="a§c°)T + AT where the vector AT is the solution to the set of simultaneous equations
i} 0 a

EWE 29 yr( az;, A = ZWE‘ g' T 5] (48)

1=1 aak t=1

The function g; and the vector of partial derivatives are evaluated at a;co). From A7 one

has
S (o) = ~an (T 2)s (49)

where f'(z) = df /dz. After solving (A8) for A, ax replaces ag)) and the process can be
repeated until convergence (L, stops decreasing).
It is possible that a Gauss-Newton step fails to decrease Ly (Lz(c (0 )+A) > Lo(a (o0 )))
In this case the step is cut in half (o = a£ )+ A/2). If this new step still results in an
increase in Lg, the step is cut again (ag = a}c )+ A /4). This repeated cutting of the step
is continued until Ly decreases. Since the matrix on the left-hand-side of (A8) is positive
definite, A = A/ | A | is a valid descent direction and at some point the step halving must
give rise to a decrease in Ly (unless a( ) represents a minimum of L;).
~ “As discussed in Section 6.2, the functions fi(of z) are stored as an ordinate and

abscissa value for each observation. The derivative estimates ff(af z) are similarily stored

(see below). These values are obtained when fx(af z) is evaluated (A5). When aLO)T is
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changed to af (via Gauss-Newton update), an interpolation scheme must be employed to
obtain values for fi (af z) from fk(aLO)Tz). This interpolation is almost as expensive as
obtaining the optimal function for the new argument af z. We, therefore, do not iterate
the Gauss-Newton stepping until convergence for a given function, but rather take only
a single step. A new (optimal) function f} [(a}so)r + AT)z] (A5) is evaluated, and the
next Gauss-Newton step (A7-A9) is made based on this new function. Step cutting, as
described above, is employed for bad steps. In this way both the function and the predictor
linear combination for the k —th term are simultaneously optimized by the Gauss-Newton
iteration procedure.

The expected values E[] are easily evaluated via (3). The conditional expectation
estimates (A5) for evaluation of the optimal functions are more difficult. The method used
here is described in detail in Friedman (1984). The derivative estimates (9 and A9) are
made by taking first differences of the function estimates

[filof z141) = felaf zi—1)]
of (Zi+1 — Z1-1)

flleFa) = (2<ISN-1) (410)

where the z; are labeled in increasing order of of z. Endpoints (I = 1 and ! = N)
are handled by simply copying the values of their nearest neighbors. Such estimates can
become unstable if the denominator becomes too small. This can be avoided by pooling

observations for which
|af(zi—zp) | <el (1< <N) (A11)

into a single observation for the purpose of derivative calculation. Here I is the semi-
interquartile range of af = and € is a small number (¢ ~ 0.05). This pooling can be done
rapidly by using a method similar to the pooled-adjacent-violators algorithm for isotone
regression (Kruskal, 1964).

The SMART program provides the user some control over the optimization process.
_ This control is exercised through the parameter LF in the /PARMS/ common block (see
Section 5.3). This parameter can take integer values between zero and three (default,
LF = 2). Level three (LF = 3) optimization is that which is described above in this

section. The other (lower) levels induce some shortcuts in the optimization procedure.
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Level two (LF = 2) optimization has the same goal as level three: that is, minimize
L, (2) with respect to all parameters and functions. The two levels differ only in strategy.
With level two only one Gauss-Newton step (for the ajx, 1 < 7 < p) and corresponding
function fi optimization is performed for each new set of f;x (1 < 1 < g) in the iteration
loop for the kth term (see Al), rather than completely optimizing with respect to ;% and
f& for each new set of Fix. (For single response regression (g = 1) the two strategies are
equivalent.) Level two optimization is usually faster but a little less robust (more easily
trapped at saddle points) than level three.

The two lowest levels of optimization, levels zero and one, actually construct different
models. These models have the same form as SMART models (1) but the parameter and
function estimates are obtained by partially rather than completely minimizing Lo (2).
Level zero (LF = 0) implements a purely stagewise optimization strategy. At each stage
the loss criterion Lo (2) is minimized only with respect to the parameters and function
of the Mth term, Bim (1 <1 £ q), aju (1 € 7 < p), fue(aX,z), given the previously
established values for the corresponding quantities in the earlier terms (1 < m < M —1).
The M term model consists of the newly established estimates at the Mth stage as well
as those for the previous (M — 1 term) model.

Level one optimization (LF = 1) represents a compromise between a purely stagewise
strategy (level zero) and complete least squares (levels two and three). Here the estimates
for the predictor linear combinations (al) are obtained in a stagewise manner as described
above. However, the M term model is obtained by completely minimizing L, (2) with
respect to the Bim (1 < ¢ < q) and fp, given the stagewise estimates for the of, (1 <
m < M). For a single response (g = 1), level one optimization is similar to the procedure
employed in PPR modeling (Friedman and Stuetzle, 1981). The only differences are in
the backwards stepwise model selection procedure (see Section 3) used by SMART, and
in the use of the Gauss-Newton (rather than a Rosenbrock) procedure for the numerical
optimization.

****** “The principal advantage of level zero or one optimization over complete least squares
(levels two or three) is computation speed. If this is a problem, then the lower optimization

levels can be used to rapidly obtain models that are often quite competitive with the
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full least squares solution. This is especially true when there is not a high degree of
association among the predictor variables. Also, the lower optimization levels can be

useful for exploratory work.
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